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We investigate the dynamics of a non-Brownian sphere suspended in a quiescent
fluid and moving through a periodic array of solid obstacles under the action of
a constant external force by means of Stokesian dynamics simulations. We show
that in the presence of non-hydrodynamic, short-range interactions between the
solid obstacles and the suspended sphere, the moving particle becomes locked into
periodic trajectories with an average orientation that coincides with one of the lattice
directions and is, in general, different from the direction of the driving force. The
locking angle depends on the details of the non-hydrodynamic interactions and
could lead to vector separation of different species for certain orientations of the
external force. We explicitly show the presence of separation for a mixture of
suspended particles with different roughness, moving through a square lattice of
spherical obstacles. We also present a dilute model based on the two-particle mobility
and resistance functions for the collision between spheres of different sizes. This
simple model predicts the separation of particles of different size and also suggests
that microdevices that maximize the differences in interaction area between the
different particles and the solid obstacles would be more sensitive for size separation
based on non-hydrodynamic interactions.

1. Introduction
The transport of suspended particles through porous media is central to a wide

range of separation techniques that rely on the principle that the trajectories followed
by the suspended species depend on their interaction with the porous material. In
many cases, it is the geometrical structure of the stationary phase that is the main
factor influencing the transport of suspended species in the mobile phase. These
geometric (or confinement) effects are most important when the pore dimensions
are of the same order as those of the transported species. Two clear examples of
separation approaches based on geometric effects are size-exclusion chromatography
and hydrodynamic chromatography. In both cases the separation is driven by the
degree of hindrance on the transport of finite-size particles caused by the porous
structure (Giddings 1991). Therefore, controlling the structure of the stationary phase
is an important aspect in the development of an effective separation media. The advent
of microfabrication techniques, and more specifically that of soft lithography, has led
to the design of microfluidic devices with features in the micron and sub-micron scales.
This has allowed for the successful miniaturization of various separation techniques,
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including those based on steric and hydrodynamic effects (Slater et al. 2000; Blom et
al. 2003; Khandurina & Guttman 2003; Tegenfeldt et al. 2004; Vilkner, Janasek &
Manz 2004; Li, Huang & Chang 2005; Szekely & Guttman 2005; Dittrich, Tachikawa
& Manz 2006; Szatai & Guttman 2006; Pamme 2007).

The ability to fine-tune the geometry and chemistry of the pore space at scales
comparable to the size of the transported particles opens the door to the development
of novel separation methods that go beyond the miniaturization of traditional
techniques (Duke 1998; Squires & Quake 2005; Eijkel & van den Berg 2006).
In traditional separation columns, the random nature of the pore space means
that the separative displacement of different species is the average behaviour of
an inherently stochastic process. In fact, traditional theories focus on the average
transport properties of these systems, such as the average velocity of suspended
particles and the hydrodynamic dispersion resulting from the disordered structure
of the pore space (Bear 1988; Giddings 1991). This is in sharp contrast with recent
microdevices that use ordered arrays of solid obstacles to induce particle separation by
deterministic lateral displacements. This approach is based on to a transport regime
that is not accessible with a random porous material – and their associated theories
(Huang et al. 2004; Davis et al. 2006; Inglis et al. 2006). Although the exact mechanism
causing deterministic separation is not fully understood (a phenomenological model
is discussed in Inglis et al. 2006) it is clear that the hydrodynamic interaction of the
suspended particles with the array of obstacles plays an important role. It is thus
important to investigate the trajectories followed by individual particles as they move
through an ordered pattern of solid obstacles. In particular, studies in the regime of
high Pe number would truly explore the deterministic behaviour and would showcase
the physics causing the observed separation. A better understanding of the motion
of individual particles would allow for the design of periodic microstructures that
optimize the separation of a given mixture of suspended species.

In this work, we describe the dynamics of a non-Brownian sphere suspended in
a quiescent fluid and moving through a periodic array of solid obstacles under the
action of a constant external force. We show that particles become locked into periodic
trajectories with an average orientation that coincides with one of the lattice directions
(directional/phase locking). Phase-locking behaviour is common to transport through
periodic structures in other systems, such as the motion of vortices through periodic
pinning potentials in superconductors (Marconi et al. 2000), the transport of colloidal
particles through optical tweezer arrays (Grier 2003) and others (Korda Taylor &
Grier 2002; Reichhardt & Reichhardt 2004; Lacasta et al. 2006). In the case studied
here, we show that this macroscopic behaviour is caused by non-hydrodynamic,
short-range interactions between the suspended spheres and the solid obstacles. Such
short-range interactions can originate, for example, from the (unavoidable) deviations
from the idealization of perfectly smooth spheres when considering particle–obstacle
hydrodynamic interactions. Indeed, our results show that a periodic microstructure
could induce separation based on the degree of surface roughness of the spherical
particles.

Our work explores the deterministic motion of particles, a different regime than
that investigated in the pioneering work of Brenner (1980) and Brenner & Adler
(1982), which provided the general framework of macrotransport theory to analyse
the motion of Brownian particles in spatially periodic microdevices (see also Brenner
& Edwards 1993). Macrotransport theory can be used to describe transport under the
action of the driving fields commonly employed in separation sciences, i.e. external
forces such as gravity or electric fields and pressure-driven flows. Analogous theoretical
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tools have been developed in the context of stochastic processes to solve the Fokker–
Planck equation in periodic systems (Risken 1989; Reimann 2002). Dorfman &
Brenner (2001) first analysed the behaviour of micropatterned devices in the context
of macrotransport theory, and termed these techniques vector chromatography. In
vector chromatography different species migrate at different angles with respect to
the underlying lattice of the periodic pattern of obstacles, which could lead to the
development of continuous flow separations (Pamme 2007). Dorfman & Brenner
(2001) analysed in detail the transport of suspended particles through a sequence
of fluid layers of different viscosity and showed that a uniform external force can
induce concentration gradients and diffusive fluxes that lead to migration angles
which depend on the Péclet number of the different species. Similar results were
obtained for transport in periodic potential fields (see the early work by Nitsche &
Brenner 1988 and more recent references in the review by Eijkel & van den Berg
2006). Analogous results were also obtained in the case of patterns of solid obstacles
but only for tracer particles with spatially uniform mobilities (see the original work
by Ertas 1998 and Duke & Austin 1998 and a more detailed analysis by Keller,
Marquardt & Bruder 2002). Recent work, however, shows that finite-size effects are
crucial to the observed separation in microdevices (Austin et al. 2002; Cabodi et al.
2002; Dorfman & Brenner 2002; Huang et al. 2002; Tegenfeldt et al. 2004; Li &
Drazer 2007). Phillips, Deen & Brady (1989, 1990) studied the convective motion of
finite-size spherical particles through periodic arrays of bead-and-string fibres aligned
perpendicular to the flow. However, they were interested in the behaviour at low
Péclet (Pe) numbers and did not investigate the trajectories of individual particles in
the deterministic limit.

Here, we investigate the case of finite-size particles in the limit of high Péclet
numbers (which corresponds to the deterministic transport of non-Brownian particles)
in the presence of particle–obstacle hydrodynamic interactions. Specifically, we will
show that the presence of directional locking can induce size-based separation of
particles by deterministic lateral displacement.

2. Model system and simulation methods
Ordered arrays of cylinders, and other spatially periodic systems, have been

extensively used to investigate transport phenomena in porous media. In these models
of porous media it is possible to calculate pure-fluid average transport properties,
such as the macroscopic permeability of the system in different directions (Hasimoto
1959). In addition, the description of solute (tracer) transport in these model systems
reduces to a convection–diffusion problem in a single unit cell with periodic boundary
conditions. Macroscopic parameters such as the asymptotic hydrodynamic dispersion
can then be calculated using macrotransport theory (Brenner 1980; Koch et al.
1989; Edwards et al. 1991). The transport of finite-size particles through spatially
periodic porous media constructed by ordered (and disordered) arrays of cylinders
have also been investigated in previous studies, mostly in the context of filtration
theory. However, these studies focused on the case of a large aspect ratio between the
transported particles and the cylinders (collectors) and either neglected hydrodynamic
interactions or approximated them by the hydrodynamic forces between a spherical
particle and a flat wall (Masliyah & Bhattacharjee 2006). In addition, there is no
analytical expression available for the resistance tensor for an arbitrary sphere–
cylinder configuration. Therefore, we follow the approach by Phillips et al. (1989)
and consider a simpler model, which still captures the structure of the real system
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but for which we can calculate the two-particle (PP) sphere–obstacle hydrodynamic
interaction. That is we consider a solid, non-Brownian spherical particle of radius a1

suspended in a Newtonian fluid and driven through a spatially periodic configuration
of N − 1 fixed spheres of radius a2 by a constant external force. Although here we
do not consider motion in the direction of the cylinder axes, an analogous model
that could incorporate such motion would consist of bead-and-string fibres aligned
perpendicular to the flow (Phillips et al. 1989, 1990). Let us note that, in spite of
the simple nature of this model, it has been shown to capture the behaviour of
several transport properties of real systems, including the permeability perpendicular
to and along the cylinders, as well as the hindered diffusivity of the suspended
particles as a function of the volume fraction or porosity of the media (Phillips
et al. 1989). In addition, experimentally measured PP sphere–cylinder interactions
have been shown to be similar to sphere–sphere interactions over a wide range of
separations (Adamczyk, Adamczyk & Vandeven 1983).

In the limit of low Reynolds numbers, the velocities of the spheres are a linear
transformation of the hydrodynamic forces acting on them:

F = R · u, (2.1a)

u = M · F, (2.1b)

where R is the resistance matrix; M is the mobility matrix; u is the 6N vector with all
the linear and angular velocity components; and F is the 6N vector of hydrodynamic
forces and torques acting on the spheres. In addition, in the absence of inertia, the
total force on each particle is zero. Then, if the mobile sphere is particle 1 and if
the remaining N − 1 spheres are fixed, we obtain the following system of equations
(Morris & Brady 1998): (

0

F′

)
= R ·

(
u1

0

)
+

(
Fp

0

)
, (2.2)

where Fp is the external force acting on the moving sphere and F′ corresponds to
the forces and torques necessary to keep the other N − 1 particles fixed. Both R
and M depend only on the spatial configuration of the particles, and their numerical
calculation is described in § 2.1 and § 2.2. Once the mobility or resistance matrix is
determined for a given configuration of the spheres, we can obtain the velocity of the
moving particle, u1, from (2.2). We then calculate the position of the moving sphere
a short time later and repeat the procedure to generate its trajectory.

2.1. Stokesian dynamics

We use the Stokesian dynamics (SD) method to calculate the hydrodynamic
interactions in the case of monodisperse spheres (a = a1 = a2). Briefly, SD combines
a far-field multipole expansion for the grand mobility matrix (neglecting terms higher
than quadrupoles) with a pairwise additive calculation of the lubrication forces (see
Durlofsky, Brady & Bossis 1987 and Brady & Bossis 1988 for a detailed description
of the SD method). The grand mobility matrix is inverted at every time step to
calculate the velocity of the moving particle. A short-ranged, repulsive force is usually
introduced between the spheres to qualitatively model non-hydrodynamic effects such
as surface roughness. This repulsive force also prevents the overlap between spheres
when using a constant time step in the trajectory integration. In this work we use the
following expression for the repulsive interparticle force, already well-tested in the
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context of SD:

Fαβ =
F

rc

e−ξ/rc

1 − e−ξ/rc
eαβ , (2.3)

where Fαβ is the force exerted on sphere α by sphere β; F is a parameter that
determines the magnitude of this force; rc is the characteristic range of the force; ξ

is the separation between the surfaces of the two spheres divided by a; and eαβ is
the unit vector connecting their centres pointing from β to α. In what follows all the
variables are made dimensionless with the average particle size a = (a1 + a2)/2 as
the characteristic length and a/US as the characteristic time, where US = F p/6πμa

is the Stokes velocity in an unbounded fluid. The non-hydrodynamic interparticle
force have a cutoff distance ε such that repulsive interactions are present only for
ξ < ε. For a typical simulation we use rc = ε and F = 0.1. We will see in § 3 that
this choice of parameters gives results that are consistent with a hardcore model of
surface roughness with relative magnitude ε. Finally, we also set the magnitude of
the external force acting on the moving sphere to be |F p| = F .

2.2. Two-particle simulations

Two-particle (PP) simulations were performed using the mobility functions given by
Jeffrey & Onishi (1984). Consider two particles with radii a1 and a2 separated by
a distance r . Let us define the size ratio λ = a2/a1, the non-dimensional separation
s = 2r/(a1 + a2) = r/a and the non-dimensional gap between the particles ξ = s − 2.
Following the notation of Jeffrey & Onishi (1984), all the components of the mobility
matrix are written in terms of scalar functions xP

αβ and yP
αβ , where α and β are either

particle 1 or particle 2 and P is one of the tensors (A, B or C) in the mobility matrix
that relates the forces on particle α with the velocity of particle β . Expressions for
these scalar functions are given in the far-field approximation, s � 2, and in the
lubrication approximation, ξ � 1. In our simulations, we use the far-field expressions,
with errors in the multipole expansion of the scalar functions O(1/r11) or smaller,
for s � sc = 2.05, and the lubrication approximation, for s < sc = 2.05. We shall
show that for two equal spheres this choice of sc gives reasonable agreement with the
solutions obtained by SD simulations. The equations of motion are integrated using
a small time step �t in the range 10−3–10−5 depending on the minimum separation
ξmin between the spheres during the encounter.

3. Hydrodynamic interactions and two-particle trajectories
During the motion of a freely suspended sphere past a fixed one, lubrication forces

prevent the two particles from touching, but the two spheres could become arbitrarily
close to each other during the encounter. It is likely then that small deviations from
the mathematical idealization of perfectly smooth spherical particles, e.g. the presence
of surface roughness, would have an effect on the particle trajectories whenever the
minimum separation during a collision becomes comparable to the surface roughness.
In the analogous case of sheared suspensions, for example, it has been argued in both
experimental and numerical studies that the presence of nearly touching collisions
leads to measurable macroscopic effects induced by short-range, non-hydrodynamic
forces between particles (Gadala-Maria & Acrivos 1980; daCunha & Hinch 1996;
Rampall, Smart & Leighton 1997; Drazer et al. 2002b, 2004; Davis et al. 2003). It is
important then to investigate the effect that PP collisions have on the macroscopic
trajectory of the spheres in the presence of non-hydrodynamic forces.
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Figure 1. Schematic view of the trajectory resulting from the collision of a freely suspended
sphere (particle 1), on which a constant external force is applied, with a sphere that remains
fixed at the centre (particle 2).

We consider planar collisions, in which an incoming sphere (particle 1) moves
under the action of a constant external force, F = F ex , towards a fixed sphere
at the origin (particle 2), as shown in figure 1. The incoming (outgoing) ‘collision
parameter’ bin (bout ) is defined as the perpendicular distance between the centre of the
fixed sphere and the velocity of the incoming (outgoing) particle (Goldstein 1980).
The linearity and reversibility of the equations of motion at zero Reynolds number
require that the trajectory resulting from the collision between two perfectly smooth
spheres be symmetric about the plane perpendicular to the driving force that contains
the centre of the fixed particle (Ekiel-Jezewska et al. 1999). In addition, lubrication
forces prevent the particles from touching, independent of the value of the collision
parameter bin (Jeffrey & Onishi 1984). On the other hand, the minimum surface
separation between the two spheres during a collision, ξmin , becomes arbitrarily small
for bin → 0. Then, for a given magnitude of the surface roughness, ε, we can define
a critical collision parameter, bc(ε), such that for bin < bc the minimum separation
on a purely hydrodynamic trajectory is smaller than the roughness of the particle,
ξmin < ε, and the non-hydrodynamic effects are expected to significantly alter the
collision trajectory. Note that bc(ε) is simply the inverse function of ξmin(bin).

The dependence of the minimum separation, ξmin , on the collision parameter,
bin , is obtained from collision trajectories calculated in the case in which only
hydrodynamic interactions are present. The trajectories are computed using either
SD or PP simulations without repulsive forces and significantly reducing the time
step to prevent overlap between the particles.

The simulations show that the minimum separation between the particles becomes
extremely small, decreasing by six orders of magnitude to ξmin ∼ 10−6, for collision
parameters ranging from bin = 2 to bin = 0.65 (see figure 2). Let us note that it is
meaningless to consider even smaller separations. First of all, the typical roughness
observed in rheological experiments with solid particles was found to be ε ∼ 10−3–10−2

(Smart & Leighton 1989). In addition, the microfluidic systems discussed in the
introduction are intended to separate particles smaller than 100 μm. Therefore, a
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Figure 2. Minimum separation during purely hydrodynamic collisions, ξmin , as a function
of the impact parameter, bin . The same curve can be used to obtain the critical collision
parameter, bc , as a function of the relative magnitude of the surface roughness, ε. Open circles
correspond to SD. Open squares correspond to PP simulations. Solid circles correspond to
the outgoing collision parameter, bout , as a function of the roughness magnitude, ε, obtained
using SD simulations with non-hydrodynamic interactions (bin = 0.1; see discussion in the
text).

minimum separation ξmin ∼ 10−5 corresponds to a suspended particle coming within
atomic distance from the surface of a fixed sphere. For such small separations the
spheres cannot be considered to be perfectly smooth. Moreover, corrections to the
continuum approximation become important at these small separations (Drazer et al.
2002a , 2005a ,b).

The fact that a wide range of collision parameters would lead to minimum
separations between particles that are extremely small, e.g. ξmin < 10−4 for 0 <bin � 0.9,
implies that the particle trajectory should be affected readily by non-hydrodynamic
interactions caused by, for example, surface roughness. We investigate the non-
hydrodynamic effects on the trajectory of a moving particle by performing two sets of
SD simulations in the presence of the repulsive force given by (2.3). In one case, we
fix the magnitude and range of the non-hydrodynamic force (F = 0.1; ε = 10−3) and
study the trajectories resulting from different collision parameters. In the second case,
we arbitrarily fix the collision parameter to bin = 0.1 and study collision trajectories
for different values of the relative roughness of the particles.

In the first case, trajectories are symmetric for collision parameters larger than a
critical value bc ≈ 1 (see figure 3). Trajectories corresponding to bin <bc are asymmetric
and collapse into a single outgoing trajectory with bout ≈ bc. This irreversible collapse
into a single trajectory has a major impact in the trajectory of the particles through an
array of obstacles, creating periodic trajectories that act as attractors for any initial
position of the moving particle, a behaviour discussed in detail in the next section.
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Figure 3. Collision trajectories calculated using SD simulations with non-hydrodynamic
interactions. (a) Trajectories with varying incoming collision parameter ranging from bin = 0.1
to bin = 2.0. ε = 10−3. (b) Trajectories for varying relative surface roughness ranging from
ε = 10−1 to ε = 10−6; bin = 0.1.

In the second case, in which we systematically reduce the range of the interparticle
force from ε = 10−1 to ε = 10−6, the trajectories become more symmetric as the
roughness becomes smaller. Analogous trajectories with varying asymmetry depending
on the particle roughness have been previously reported for the collision between
two spheres in a sheared suspension (daCunha & Hinch 1996). These trajectories for
different roughness values are also consistent with an irreversible collapse into a single
outgoing trajectory with bout (ε) ≈ bc(ε), as shown in figure 2. The collapse into a single
trajectory depends, however, on the interparticle force used to model roughness effects.
The non-hydrodynamic interaction used here is similar to a hard-sphere potential, with
no interaction for ξ > ε and infinite repulsion for ξ < ε (Allen & Tildesley 1989).
Softer interactions, such as the algebraic soft-sphere potentials discussed in Allen
& Tildesley (1989), would probably lead to a spread of the outgoing trajectories.
However, hard-sphere type of potentials, in which particles cannot approach each
other beyond a minimum separation, are probably the simplest approximation of the
behaviour of particle–particle contact due to roughness and have been successfully
used to investigate roughness effects in suspension flows (Smart & Leighton 1989;
Davis 1992; Zeng, Kerns & Davis 1996; Rampall et al. 1997; Ekiel-Jezewska et al.
1999, 2002; Zhao & Davis 2002, 2003; Davis et al. 2003). The effect of an algebraic
repulsion on the trajectories is discussed again in the next section.

In summary, for a given particle roughness ε, we have two types of collisions:
(i) purely hydrodynamic collisions for all bin > bc(ε), in which case the trajectory is
symmetric, and the outgoing streamline is the same as the incoming one, bout = bin;
and (ii) touching collisions, for all bin < bc(ε), which result in asymmetric trajectories
that collapse into a single outgoing impact parameter, bout = bc(ε). Therefore, knowing
bc(ε) we can determine the trajectory of any binary collision. It is important to note
that a similar behaviour is expected in Stokes flows for an arbitrary driving field
that preserves the symmetry of the problem, including electrophoretic fields and
pressure-driven flows. In this case, the particle will follow symmetric trajectories in
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the absence of non-hydrodynamic interactions, from which the minimum separation,
ξmin , as a function of the incoming impact parameter, bin , can be determined. Then, the
presence of roughness would result in a critical collision parameter, bc(ε), equivalent
to that in the constant force case. Therefore, collisions with bin < bc(ε) collapse into
a single outgoing trajectory with bout = bc(ε) and the overall result of a PP collision
is completely analogous to the constant force case. The driving field determines,
however, the minimum separation corresponding to a given impact parameter and
could lead to different scaling relations between bin and ξmin .

The numerical results presented above are in qualitative agreement with the few
experiments that investigate the collision between a moving and a fixed sphere.
Ekiel-Jezewska et al. (1999), for example, report the existence of a critical collision
parameter. Malysa et al. (1986) studied the motion of a sphere sedimenting past a
second sphere attached to a flat wall. They also reported the existence of a critical
collision parameter, bexp

c = 1.34, below which the trajectories are asymmetric. They
also observe a collapse of all the receding trajectories, and in agreement with a
hard-sphere type of contact between the spheres, the receding collision parameter for
the asymmetric trajectories is b

exp
out = 1.3 ≈ bexp

c = 1.34. The experiments used spheres
with 3 mm radius and an estimated maximum roughness as large as a few microns,
which corresponds to ε ∼ 10−3. The predicted critical collision parameter in our
simulations for ε ∼ 10−3, that is bc ∼ 1.1, is in fair agreement with the experimental
value, bexp

c ≈ 1.3, especially if one takes into account the large sources of uncertainty
in the experimental measurements. On the other hand, it is not our intention to
accurately model the bc(ε) curve but to understand the effect that such a steep
curve, according to which particle–particle solid contact might be expected for impact
parameters as large as bc ∼ 1, has on the trajectory of the particles in periodic arrays.

4. Particle trajectories in a periodic array of obstacles
In this section we investigate the effect that irreversible collisions have on the

macroscopic trajectory of a non-Brownian sphere moving through a periodic array
of obstacles under the action of a constant force. In particular, we are interested
in modelling the motion of a non-Brownian particle through an array of cylindrical
obstacles and characterizing the relation between the asymptotic angle α of individual
trajectories and the orientation of the external force θ . As discussed before, we
represent the obstacles by a two-dimensional square lattice of fixed spheres (spheres’
radii a2, lattice parameter l and dimensionless lattice parameter � = l/a2). We calculate
the two-dimensional trajectories followed by freely suspended spheres of radius a1

moving in the plane x–y of the fixed spheres under the action of a constant force
Fp = F p

x ex + F p
y ey (see figure 4 for a schematic view of the system).

Let us first analyse the deterministic (high-Péclet-number limit) trajectory followed
by a point particle moving through the same array of obstacles. Specifically, consider
the streamlines in a pressure-driven (or gravity-driven) flow with average velocity
U = Uxex + Uyey . The permeability of the square lattice is isotropic, and therefore,
the average velocity is parallel to the direction of the driving force. In general, the study
of the flow generated by differential equations on the torus (two-dimensional periodic
fields) dates back to Poincaré (Arnold 1988), and recent results for incompressible
flows with non-zero average velocity show (i) that the asymptotic slope of the
streamlines (also called the rotation number) is parallel to U (α = θ) and (ii) that
the existence of unbounded periodic trajectories depends on the commensurability of
the mean drift (Weinan 1992; Fannjiang & Papanicolaou 1994). Specifically, when
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Figure 4. Schematic representation of a sphere (particle 1; radius a1) moving in a
two-dimensional periodic lattice of N − 1 spherical particles of radii a2. The lattice parameter
is l = � a2. A constant force F is applied on particle 1 at an angle θ with respect to the x-axis.

Ux and Uy are incommensurate, there are no unbounded periodic streamlines, and
any unbounded trajectory is ergodic in the region of open streamlines. On the other
hand, Ux and Uy are commensurate if and only if there is an unbounded periodic
trajectory (Weinan 1992; Fannjiang & Papanicolaou 1994). Similar conclusions were
reached by Koch et al. (1989).

Some of the discussed properties of two-dimensional streamlines also apply to the
trajectories described by finite-size particles, even though the flow field is no longer
incompressible in the latter case. First, in the absence of inertia (Stokes regime) two
trajectories cannot cross each other, since the velocity of a particle is fully determined
by its position. Therefore, all unbounded trajectories have the same asymptotic slope,
which can thus be determined from a single simulated trajectory with arbitrary initial
conditions. Second, the existence of periodic trajectories can be easily demonstrated
in the case in which the external force is oriented in one of the main symmetry
directions, that is Fp = F pex , Fp = F pey or F p

x = F p
y . These directions define planes

of both translational and reflectional symmetries and together with the symmetry
and reversibility of the Stokes equations require that all the trajectories are periodic.
Finally, the existence or not of periodic trajectories for an arbitrary orientation of the
external force has, to our knowledge, not been determined for purely hydrodynamic
interactions. However, we shall see that the presence of non-hydrodynamic forces
induces periodic trajectories for both commensurate and incommensurate orientations
of the driving force.
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[1,1]
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Figure 5. Periodic trajectories obtained at different forcing angles θ . The lattice parameter is
� = 5, and the range of the repulsive force is ε = 10−3. Trajectories are grouped according to
their macroscopic motion. From top to bottom: (i) lattice direction [1,2]; α = 71.56◦; forcing
directions: θ = 58.50◦, 60.75◦, 63.00◦, 65.25◦, 67.50◦; (ii) lattice direction [2,3]; α = 56.31◦;
forcing direction: θ = 56.25◦; (iii) lattice direction [1,1]; α = 45.00◦; forcing directions:
θ = 54.00◦, 51.75◦, 49.50◦, 47.25◦; (iv) lattice direction [3,1]; α = 18.43◦; forcing directions:
θ = 20.25◦, 18.00◦, 15.75◦; (v) lattice direction [1,0]; α = 0◦; forcing directions: θ � 13.50◦.
The lattice directions at which directional locking occurs are shown in the inset.

4.1. Case I: a = a1 = a2, Stokesian dynamics simulations

We simulate the trajectories of non-Brownian particles in the case a = a1 = a2

by means of SD simulations. We observe that, independent of the orientation of the
external force, the suspended spheres describe trajectories that are commensurate with
the underlying obstacle lattice (see figure 5). That is the average motion of the particles
is in one of the lattice directions, [p, q], with p and q integers and α[p,q] = arctan(q/p).
Thus, in general, the particle will move at an angle that is different from that of the
external force. We also observe directional locking, in that suspended spheres driven
at different angles move, on average, in the same lattice direction. In fact, in figure 5
we show that particles forced at more than 15 different angles get locked into
only five different orientations, corresponding to lattice directions [1, 2], [2, 3], [1, 1],
[3, 1], [1, 0] (see figure 5). For example, trajectories corresponding to forcing angles
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Figure 6. Periodic trajectories obtained for different initial conditions and two different
relative roughness of the spheres. Lattice parameter � = 5. For all the trajectories the forcing
direction is θ = 14.00◦. Top trajectories (open symbols in the inset) correspond to ε = 10−3

and move in the lattice direction [4,1], α = 14.04◦. This corresponds to a small deviation in
the direction of motion, that is α − θ ≈ 0. Bottom trajectories (closed symbols in the inset)
correspond to ε = 10−2 and move in the [1,0] lattice direction, α = 0◦, corresponding to a
large migration angle with respect to the direction of the driving force.

θ = 58.50◦, 60.75◦, 63.00◦, 65.25◦ and 67.50◦ move at a macroscopic angle α = 71.56◦

(lattice direction [1, 2]). The observed directional locking is induced by the presence
of non-hydrodynamic forces. We observe that all the trajectories become periodic
after a small number of touching collisions, which can be easily explained based on
the results obtained for PP collisions. When a moving particle reaches a distance
ε or smaller from one of the fixed particles, the receding part of the trajectory is
analogous to the outgoing trajectory in a touching collision, with bout = bc(ε). That is
for a touching collision the outgoing trajectory is independent of the initial condition.
Therefore, a set of incoming trajectories collapses into a single outgoing trajectory,
analogous to the case 0 < bin < bc(ε) in the PP case. As a consequence, the next
touching collision will lead to the same outgoing trajectory, and the motion becomes
periodic thereafter. In fact, in the simple square lattice shown in figure 5 there might
be a maximum of two touching collisions in a single period of the trajectory, one with
clockwise motion of the centre of the moving sphere during the collision and one with
counterclockwise motion. These two touching collisions correspond to positive and
negative collision parameters in the PP case. In more complex arrays of obstacles,
such as the lattice shown in figure 7, the number of touching collisions in a single
period of the trajectory could be as large as 2 n, where n is the number of obstacles
in a unit cell. In general, the trajectory repeats itself after the moving sphere comes
into contact for a second time with a fixed sphere occupying a specific position in the
unit cell.

The fact that the periodic motion of the particles is induced by the non-
hydrodynamic forces suggests that different short-range particle–obstacle interactions
could lead to vector separation. In fact, the presence of vector separation for equal
spheres with different magnitude of the surface roughness is shown in figure 6.
Although all the trajectories correspond to an external force with θ = 14◦, the motion
of the particles is either at α = 0◦ for ε = 10−3 or at α = 14.04◦, corresponding to the
lattice direction [4,1], for smoother spheres with ε = 10−4. Note that this is consistent
with smoother spheres having smaller migration angles, in this case α − θ ≈ 0.04.
Particle trajectories do not cross each other, and therefore, the macroscopic direction
of motion, α, is independent of the initial position of the particle inside the unit cell.
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[1,1] [4,3]

[3,2]

[2,1]

[5,2]

[7,2]

[5,1]

[6,5]

[5,3]

Figure 7. Periodic trajectories in a square lattice, � = 12, with three particles in each

unit cell. The position of the obstacles are (0,
√

3d/4); (−d/2, −
√

3d/4); (+d/2, −
√

3d/4)
from the centre of the unit cell, forming an equilateral triangle with side d = 5. The
trajectories correspond to forcing angles (from top to bottom): θ = 42.75◦, 40.50◦, 38.25◦,
33.75◦, 31.50◦, 24.75◦, 20, 25◦, 15.75◦, 11.25◦. The locking directions are indicated in the figure.
The beginning and end of a single period in each trajectory are indicated with arrows. The
roughness parameter in the SD simulations is ε = 10−3.

This is shown in figure 6 and validates the use of individual trajectories to characterize
the α versus θ relation.

A periodic motion set by successive touching collisions requires a macroscopic angle
of the trajectories that is a commensurate direction of the obstacle lattice. Let us note
that, in the obstacle array studied above, the positions of the obstacles coincides with
the vertices of the unit cell. In general, a periodic array of obstacles is defined by
a Bravais lattice and an arbitrary distribution of obstacles inside the unit cell, i.e. a
basis. The possible locking directions are given by the symmetry of the Bravais lattice
independent of the position of the obstacles inside the unit cell. This is borne out
in figure 7, where it is clear that, although the position of the obstacles within the
square lattice is different from the previous case, with three obstacles in each unit
cell and broken rotational symmetry, the locking angles are, as before, commensurate
directions of the square lattice. In figure 7 we explicitly show the periodicity of the
trajectories after colliding for a second time with equivalent fixed spheres and the
corresponding lattice direction, for several locking angles.

The previous results show that, although the medium permeability is isotropic for
a simple fluid, the average motion of finite-size particles is not necessarily in the
same direction as the external force, due to the non-hydrodynamic interactions of
the suspended particle with the solid obstacles. In addition, the fact that we observe
that a finite range of forcing angles leads to the same macroscopic orientation of
the particle trajectory implies that even for some commensurate forcing directions
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Figure 8. Macroscopic orientation of the particle trajectories as a function of the orientation
of the driving force, i.e. α versus θ . The lattice is shown in figure 5. The simulations are
performed for different surface roughness: closed circles correspond to ε = 10−2; open squares
correspond to ε = 10−3; open triangles correspond to ε = 10−4. Solid lines correspond to
results obtained in the dilute approximation (see § 4.2). Solid lines are shifted vertically for the
sake of clarity.

the particles move at a different angle (θ = arctan(q/p) is a dense subset of all the
possible angles).

In figure 8 we present the asymptotic angle of motion as a function of the forcing
direction for three different magnitudes of the particle roughness. Let us note, first,
the Devil’s staircase type of structure of this curve, which is typical of phase-locking
systems (Bak 1986; Gopinathan & Grier 2004). More importantly, it is clear that
there are some forcing angles for which not all the particles move together. That
is the macroscopic orientation of the trajectories depends on the roughness of the
particles, as previously shown in figure 6. This result indicates that a strategy for
vector separation could be based on the details of the particle–obstacle interactions
in periodic systems.

Finally, in order to check the generality of the observed locking dynamics, we
simulated the trajectory of a particle for different short-range forces, including different
magnitudes of the repulsive force given by (2.3) and different magnitudes of a soft
repulsion term, given by Fs = A/ξ 2. Specifically, we first simulated a case similar to
those shown in figure 5 with F = 0.1, rc = 10−3 and ε = 10−3. We then simulated the
motion for different magnitudes of the force F = 1, 10, 50 and 100. (We also increased
the roughness, ε = 0.01, and the cutoff radius, rc = 0.1.) Finally, we simulated the case
of the soft repulsion force given above for A = 0.1, 0.01 and 0.001. In figure 9 we can
see that the same locking dynamics are observed in all cases, with the only difference
being in the effective migration angle which depends on the non-hydrodynamic force,
as shown before.
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Fs; A = 0.001

F = 0.1

F = 1, 10, 50, 100

Fs; A = 0.01; 0.1

Figure 9. Comparison of trajectories obtained using SD simulations for different
non-hydrodynamic repulsive forces between the spheres. The different simulations correspond
to (i) force given by (2.3) with ε = 10−3, rc = 10−3, F = 0.1 (solid line); (ii) force given by
(2.3) with ε = 10−2, rc = 0.1, F = 1, 10, 50 and 100 (dashed lines); and (iii) a soft repulsive
force given by Fs = A/ξ 2, with A = 0.1, 0.01 and 0.001 (solid lines).

4.2. Case II: a1 �= a2, two-particle collision model

In the previous section we showed that non-hydrodynamic interactions can lead to
vector separation due to a directional locking of the trajectories that depends on the
particle roughness. Here, we extend our analysis to particles whose sizes are different
from that of the obstacles.

In § 3 we analysed the collision of a moving sphere with a fixed one and showed
that, in the presence of non-hydrodynamic forces, there are two types of collisions:
collisions leading to symmetric trajectories for bin > bc(ε) and collisions that collapse
into a single receding trajectory with bout = bc(ε) for bin � bc(ε). In the dilute limit,
that is for � � 1, we can approximate the particle trajectories by a series of PP
collisions joined by motion in straight lines between collisions. In this approximation,
the symmetric collisions are irrelevant, in that they do not alter the trajectory of the
moving particle. On the other hand, the only effect of the touching collisions is a
displacement perpendicular to the direction of motion by bin − bout = bin − bc(ε).

First, we show in figure 10 that the trajectories obtained using this approximation
for the case of equal spheres exhibit, in general, the same macroscopic angle as those
calculated from SD simulations. In addition, in figure 8 we compare the α versus θ

curve obtained with the present model with the SD results discussed before. Although
the transition angles between consecutive plateaus might be slightly different in some
cases, the agreement is generally good for all the magnitudes of the particle roughness.

We then use this dilute approximation to investigate directional locking and vector
separation in the case of unequal spheres. First, we compute the bc(ε) curve for
different particle sizes, that is bc ≡ bc(ε, λ). Then, using the dilute approximation we
determine the corresponding locking curve α ≡ α(θ, ε, λ). In figure 11(a) we present
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Figure 10. Comparison of trajectories obtained in the dilute approximation (§ 4.2) with
those obtained using SD simulations. We compare one trajectory for each of the locking
directions presented in figure 5. Solid lines correspond to the dilute approximation. Dashed
lines correspond to SD simulations. The locking directions are indicated in the figure.

the minimum separation during collision as a function of the impact parameter, for
different size ratios λ. It can be seen that, for a given incoming collision parameter,
the minimum separation decreases as the size ratio deviates from one. In other words,
for a given relative roughness ε, the critical collision parameter bc(ε) is larger for
larger values of λ or 1/λ. These results indicate that a mixture of suspended spheres
of different sizes might separate as they move through an array of obstacles. In figure
11(b) we plot the dimensional critical collision parameter, b̃c = bc(a1 + a2)/2, for a
moving particle of size a1 = 1 and various obstacle sizes, a2 = λ. It is clear that,
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Figure 11. Minimum separation during purely hydrodynamic collisions, ξmin , as a function
of the impact parameter, for different size ratios, λ. The results correspond to the numerical
integration of PP collision trajectories (see § 2.2). The different plots correspond to ξmin as
a function of (a) the non-dimensional collision parameter bin ; (b) the collision parameter
normalized by the radius of the moving particle b̃in ; and (c) the collision parameter normalized
by the radius of the fixed spheres, b̃in/λ.

for a given particle size, obstacles larger than the particle result in larger values
of b̃c = bc(a1 + a2)/2 and the corresponding migration angles (comparing critical
collision parameters for a constant roughness). In this dilute approximation, two
particles with the same critical collision parameter move at the same macroscopic
angle, α, independent of their size. Then, only particles that have different critical
collision parameters for a fixed obstacle size, that is b̃c/λ, could potentially separate.
To show the possibility for deterministic vector separation based on particle size we
analyse in detail the transport of different particles through a square lattice (� = 12).
First, we arbitrarily consider a mixture of particles with the same particle roughness
independent of size, that is ε = 10−2 for all λ. Then, using the dilute approximation,
we calculate the migration angle, α − θ , as a function of the driving direction θ ,
for different size ratios: λ = 1, 0.5, 2, 0.25, 4, 0.125, 8. We find the same type of
directional locking as in the case of equal size particles (see figure 12). We can also
see that the migration angles are larger for particles that are larger than the obstacles
(λ < 1). This is also observed in figure 11(c), in which the dimensional critical collision
parameter is presented for different sizes of the moving particle and a constant size
of the obstacles (a2 = 1; a1 = 1/λ).

Finally, using the migration angles presented in figure 12, we select a driving
direction that leads to four different locking angles depending on the size of the
particles (θ ≈ 21◦, see inset in figure 12). We then simulate the transport of a mixture
of particles through the square lattice of obstacles. To simulate the motion of all the
particles, including the ones that have the same size as the obstacles, we used the
dilute approximation. We find the presence of vector separation and observe that, as
expected, larger particles (λ < 1) have larger migration angles (see figure 13). Let us
mention that a possible drawback of this separation method is that the migration
angle is not necessarily monotonous with particle size, which could make it difficult
to separate a mixture with a wide range of particle sizes. Possible solutions to this
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Figure 12. Macroscopic migration angle, α − θ , as a function of the orientation of the driving
force, θ , for different size ratios, λ. We use a square lattice with � = 12 to allow for the motion
of larger particles. The simulations are performed for a surface roughness ε = 10−2. The inset
shows in detail the migration angle for a forcing direction θ = 21.06◦ (corresponding to the
dashed vertical line), for which particles migrate at four different directions depending on their
size.

problem include (i) using an obstacle pattern in which the orientation relative to the
external driving field changes along the device (Huang et al. 2004) and (ii) using
different obstacle patterns in series. In both cases, one could optimize different parts
of the system to separate specific particle sizes.

5. Summary
We investigated the trajectory described by finite-size spherical particles moving

through a periodic array of obstacles, using SD simulations as well as PP mobility
and resistance functions.

We first considered the collision between a freely suspended particle moving past
a fixed one under the action of a constant external force. We characterized the
collision trajectories based on the incoming (outgoing) impact parameters, bin (bout ).
We showed not only that the two spheres could come extremely close to each other
during the collision but also that relatively large impact parameters would lead,
in principle, to atomic-scale separations for typical particles in microdevices. For
example, we estimated that a sphere of radius 100 μm would come within 10Å of
the fixed sphere for an impact parameter b̃in ≈ 75 μm and a trajectory resulting from
purely hydrodynamic interactions. Therefore, even small surface roughness, or other
short-range non-hydrodynamic forces, would become important when the particles
get sufficiently close, and the trajectory followed by the particles will deviate from
the ideal case of two perfectly smooth spheres with purely hydrodynamic interactions
calculated in the continuum limit.
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Figure 13. Particle trajectories for a mixture of particles of different size in a square lattice
with � = 12 and for the driving angle shown in figure 12, θ ≈ 21◦. A mixture of particles of
different sizes is in fact separated as expected from figure 12. Trajectories are calculated using
the dilute approximation discussed in the text.

We then investigated the effect that non-hydrodynamic interactions, such as surface
roughness, have on the collision trajectories, by including a short-range repulsive
force between the spheres. We showed that if bc(ε) is the critical impact parameter for
which the minimum separation between the spheres becomes equal to the roughness
magnitude ε, then binary collisions can be divided into two different types: symmetric
collisions, due to purely hydrodynamic interactions for bin > bc(ε), and touching
collisions, with bout ≈ bc(ε), for bin � bc(ε).

Touching collisions ultimately led to periodic trajectories that acted as asymptotic
trajectories (limit cycles) for any initial position of the moving particle. The
macroscopic angle of the particles trajectories was always commensurate with the
obstacle lattice and exhibited directional locking, in that certain lattice directions lock
trajectories over a finite range of force orientations. This results in a Devil’s staircase
type of curve for the trajectory angle as a function of the angle of the driving force.

The locking angle is determined by the critical collision parameter, which in turn
is determined by the non-dimensional magnitude of the surface roughness, ε. In fact,
we showed that different magnitudes of the surface roughness could lead to different
locking angles for certain orientations of the driving force. This result implies that
differences in the local, short-range interaction between suspended particles and solid
obstacles arranged in a periodic array could lead to vector separation. We explicitly
showed the presence of vector separation for a square lattice of obstacles, with
particles of equal size migrating at different angles depending on their roughness.

We also compared the SD results with a simple model in which the trajectory of the
particles was approximated by a series of PP collisions, connected by straight motion
parallel to the external force between collisions (dilute approximation). This simple
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model accurately described the dependence of the locking angle on the orientation of
the external force for different magnitudes of the relative roughness, even when the
non-dimensional distance between obstacles was as small as � = 5.

Finally, we used this dilute approximation to obtain the particle trajectory for
spherical particles of different size. First, we calculated the minimum separation
between the spheres during a PP collision as a function of the size ratio λ between the
moving sphere and the solid obstacles. We showed that the minimum separation, and
therefore the critical collision parameter, depends on the size ratio. This indicates that
vector separation could also be based on particle size. In fact, we showed that, for
certain force orientations in a simple cubic lattice, particles of different size migrate
at different angles. We also showed that, for a given particle size the critical collision
parameter is larger for larger obstacles, specially for λ > 1. On the other hand, for a
given obstacle size, the critical collision parameter increases with particle size, specially
for λ < 1. The previous results suggest that microdevices that maximize the difference
in interaction area between the different particles and the solid obstacles would be
better suited for size separation based on roughness or other non-hydrodynamic
repulsive interactions.

The results presented here show that controlling the short-range interactions
between a mixture of suspended species and the solid obstacles in microfluidic
devices is a promising strategy to obtain vector separation. To fully characterize
the potential of such systems for particle separation, however, further work is
needed to investigate the effect that the observed touching collisions have on the
hydrodynamic dispersion of finite-size particles in periodic arrays. In addition, we
have not considered here possible deviations in the observed dynamical behaviour
originated in small perturbations to the system, such as spatial deviations from the
periodic structure of the array, fluctuations in the driving force, Brownian motion of
the particles and particle-size variations within a given species. Although such effects
can significantly affect mechanical dispersion (Koch et al. 1989), they are not expected
to significantly alter the dynamical behaviour of individual trajectories, other than
possibly smoothing the transition between locked states (Heller & Bruus 2008). We
observe this behaviour in undergoing macroscopic experiments.
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